If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19=-16t^2+40t+3
We move all terms to the left:
19-(-16t^2+40t+3)=0
We get rid of parentheses
16t^2-40t-3+19=0
We add all the numbers together, and all the variables
16t^2-40t+16=0
a = 16; b = -40; c = +16;
Δ = b2-4ac
Δ = -402-4·16·16
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-24}{2*16}=\frac{16}{32} =1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+24}{2*16}=\frac{64}{32} =2 $
| 3^{3x+2}=16 | | X-0.1x=18.90 | | 4x=7=8x=7 | | 2(5x-3)=-4^2 | | y^-1/3=2 | | -8x^2-2=14 | | Y-6=-2(x+5) | | H=-16t+14t+2 | | 2m-6=4m+8 | | (6n+1)^2+2(6n+1)-3=0 | | 5+2x*4-x=15 | | -7(-m-3)+3=45 | | x+1/2=1-x+3/5 | | t/4=-11 | | -3n=-22 | | |-3|b-4(2-3b)=19 | | (4y-7)^2+(y+8)^2=180 | | 14h-32=22 | | x(10x+3)(x-7)=0 | | -4x^2-x-4=0 | | 2n-6(2=3n)=20 | | 2(x+200)+2x=1020 | | -3x=6x-8 | | 6y+5=9y-7 | | 4(5x+5)=-47+27 | | 6m-11=21 | | 5x+8x-4x-5=22 | | x+8=9x+32 | | 41+2x=127 | | 19=-9y+5+6y | | 15z/8+2/8=4 | | 2x=x+10+2x-3 |